from sklearn import datasets
iris = datasets.load_iris()
digits = datasets.load_digits()
[[ 0. 0. 5. ... 0. 0. 0.]
[ 0. 0. 0. ... 10. 0. 0.]
[ 0. 0. 0. ... 16. 9. 0.]
...
[ 0. 0. 1. ... 6. 0. 0.]
[ 0. 0. 2. ... 12. 0. 0.]
[ 0. 0. 10. ... 12. 1. 0.]]
array([0, 1, 2, ..., 8, 9, 8])
from sklearn import svm
clf = svm.SVC(gamma=0.001, C=100.)
clf.fit(digits.data[:-1], digits.target[:-1])
SVC(C=100.0, gamma=0.001)
clf.predict(digits.data[-1:])
array([8])
from sklearn import svm
from sklearn import datasets
clf = svm.SVC()
X, y = datasets.load_iris(return_X_y=True)
clf.fit(X, y)
SVC()
import pickle
s = pickle.dumps(clf)
clf2 = pickle.loads(s)
clf2.predict(X[0:1])
array([0])
0