Spearman Coefficient

import pandas as pd
from scipy.stats import spearmanr
import numpy as np
import warnings #Used primarily to ignore warnings
warnings.filterwarnings("ignore")
df = pd.read_csv('train.csv')
labels = []
values = []

for col in df.columns:
    if col not in ["ID", "target"]:
        labels.append(col)
        values.append(spearmanr(df[col].values, df['target'].values)[0])

correlation_df = pd.DataFrame({'column_label':labels, 'correlation_val':values})        
correlation_df = correlation_df.sort_values(by='correlation_val')

correlation_df = correlation_df[(correlation_df['correlation_val']>0.1) | (correlation_df['correlation_val']<-0.1)]
correlation_df
column_label correlation_val
216 77eb013ca -0.116095
1908 a60027bb4 -0.115835
1378 3adf5e2b5 -0.114185
220 186b87c05 -0.113428
2232 f8b733d3f -0.113011
2158 715fa74a4 -0.112752
2471 08af3dd45 -0.112729
3595 7b1ddbabf -0.112540
2102 adadb9a96 -0.112109
2870 8485abcab -0.111304
4852 c7ae29e66 -0.110687
3600 4f2f6b0b3 -0.110345
4772 67f9e982f -0.110242
2341 e7071d5e3 -0.109869
4152 e17f1f07c -0.109022
3275 f41f0eb2f -0.108897
3767 fbe52b1b2 -0.108612
672 f2520b601 -0.108505
2974 cd8048913 -0.108488
2574 2c136905e -0.108038
3602 e5ac02d3c -0.106720
3852 994b4c2ac -0.106573
3066 cb162bd89 -0.106288
552 1d79bc053 -0.105551
1392 dd85a900c -0.105311
757 08d203407 -0.105278
1129 cbf236577 -0.104954
1968 28dc3cc44 -0.104916
2320 a8ef2a0d2 -0.104837
3117 45cda25bb -0.104755
1722 fd9968f0d -0.104548
1238 89db78d8e -0.104448
4667 9e2040e5b -0.104247
1224 b6fa5a5fd -0.104106
299 fa6e76901 -0.103114
774 83e2ae51c -0.102465
651 e9c7ccc05 -0.102174
229 0c4bf4863 -0.101714
2999 13d853d22 -0.101657
3922 0eebebc7c -0.101501
332 707f193d9 -0.101385
1041 5a88e3d89 -0.100786
2425 ea397d576 -0.100696
2417 912f4f5de -0.100464
4875 896d1c52d -0.100381
1990 e2b4d4ef7 -0.100337
4178 06b19b6c4 -0.100202
4358 f190486d6 0.107678