Andrews Curves

# We'll also import seaborn, a Python graphing library
import warnings # current version of seaborn generates a bunch of warnings that we'll ignore
warnings.filterwarnings("ignore")
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
sns.set(style="white", color_codes=True)

# Next, we'll load the Iris flower dataset, which is in the "../input/" directory
iris = pd.read_csv("Iris.csv") # the iris dataset is now a Pandas DataFrame

# Let's see what's in the iris data - Jupyter notebooks print the result of the last thing you do
iris.head()

# Press shift+enter to execute this cell
Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
0 1 5.1 3.5 1.4 0.2 Iris-setosa
1 2 4.9 3.0 1.4 0.2 Iris-setosa
2 3 4.7 3.2 1.3 0.2 Iris-setosa
3 4 4.6 3.1 1.5 0.2 Iris-setosa
4 5 5.0 3.6 1.4 0.2 Iris-setosa
from pandas.plotting import andrews_curves
andrews_curves(iris.drop("Id", axis=1), "Species")
<AxesSubplot:>

png

from pandas.plotting import parallel_coordinates
parallel_coordinates(iris.drop("Id", axis=1), "Species")
<AxesSubplot:>

png

from pandas.plotting import radviz
radviz(iris.drop("Id", axis=1), "Species")
<AxesSubplot:>

png